
Module-1: Contour Integration-I

1 Introduction

A variety of real definite integrals can be evaluated with the help of Cauchy’s residue

theorem. In evaluating a real integral by contour integration, an appropriate complex

function and an appropriate contour must be chosen. Here we illustrate the methods

together with a suitable function f and a suitable closed contour C; the choice, never-

theless, depends on the problem.

Integration around the unit circle

An integral of the form ∫ 2π

0

f(sin θ, cos θ)dθ (1)

where the integrand is a rational function of sin θ and cos θ, can be evaluated by putting

z = eiθ. Since

sin θ =
eiθ − e−iθ

2i
, cos θ =

eiθ + e−iθ

2
,

the integral (1) takes the form ∫
C

f(z)dz

where f is a rational function of z and C is the unit circle | z | = 1.

Example 1. Show that
∫ 2π

0
dθ

5+3 cos θ
= π/2.

Solution. Let I =
∫ 2π

0
dθ

5+3 cos θ
. We put z = eiθ. Then

cos θ =
1

2

(
z +

1

z

)
.
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Therefore,

I =

∫
|z| =1

1

5 + 3
2

(
z + 1

z

) · dz
iz

=
2

i

∫
|z| =1

dz

3z2 + 10z + 3

=
2

i

∫
|z| =1

dz

(3z + 1)(z + 3)

=
2

i

∫
|z| =1

f(z)dz,

where f(z) = 1
(3z+1)(z+3)

. Now f(z) has simple poles at z = −1/3, −3 of which z = −1/3

lies inside the circle | z | = 1. Now

Res(f ;−1/3) = lim
z→−1/3

(z + 1/3)f(z) = lim
z→−1/3

1

3(z + 3)
=

1

8
.

Therefore by Cauchy’s residue theorem we have

I =
2

i
· 2πi · 1

8
=
π

2
.

This completes the solution.

Example 2. Show that
∫ 2π

0
cos 2θ

1−2a cos θ+a2
dθ = 2πa2

1−a2 , (a2 < 1).

Solution. Let I =
∫ 2π

0
cos 2θ

1−2a cos θ+a2
dθ. We put z = eiθ. Then

cos θ =
1

2

(
z +

1

z

)
, cos 2θ =

1

2

(
z2 +

1

z2

)
and dz = ieiθdθ.

Therefore,

I =

∫
|z| =1

1
2

(
z2 + 1

z2

)
1− a

(
z + 1

z

)
+ a2

dz

iz

=
1

2i

∫
|z| =1

z4 + 1

z2(z − a)(1− az)
dz

=
1

2i

∫
|z| =1

f(z)dz,

where f(z) = z4+1
z2(z−a)(1−az) . Now f(z) has simple poles at z = a, 1/a and a pole of

multiplicity 2 at z = 0, of which the poles at z = 0 and z = a lie inside the circle

| z | = 1. Now

Res(f ; a) = lim
z→a

(z − a)f(z) = lim
z→a

z4 + 1

z2(1− az)

=
a4 + 1

a2(1− a2)
.

Res(f ; 0) = lim
z→0

d

dz
[z2f(z)] = lim

z→0

d

dz

[
z4 + 1

(z − a)(1− az)

]
= −a

2 + 1

a2
.
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Therefore by Cauchy’s residue theorem we have

I = 2πi · 1

2i

[
a4 + 1

a2(1− a2)
− a2 + 1

a2

]
=

2πa2

1− a2
.

This completes the solution.

Integration around a semi-circle

To evaluate
∫∞
−∞ f(x)dx, we consider

∫
C
f(z)dz where C is the contour consisting of the

semi-circle CR : | z | = R (Im z ≥ 0) together with the diameter that encloses

it. Assuming that the function f(z) has no singularities on the real axis, by Cauchy’s

residue theorem, we have∫
CR

f(z)dz +

∫ R

−R
f(x)dx = 2πi

∑
a

Res(f ; a).

Then proceeding to the limit as R → ∞, we find the value of the integral
∫∞
−∞ f(x)dx,

provided
∫
CR
f(z)dz → 0 as R→∞.

Example 3. Evaluate
∫∞
−∞

x2

(x2+1)(x2+4)
dx.

Solution. We consider∫
C

z2

(z2 + 1)(z2 + 4)
dz =

∫
C

f(z)dz, say, (2)

where C is the contour consisting of the semi-circle CR of radius R together with the part

of the real axis from −R to R. The function f(z) has simple poles at z = ±i, z = ±2i of

which z = i and z = 2i lie inside the closed contour C (see Fig 1.1). Hence by Cauchy’s

Fig. 1:
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residue theorem we obtain∫
CR

f(z)dz +

∫ R

−R
f(x)dx = 2πi[Res(f ; i) +Res(f ; 2i)]. (3)

Now

Res(f ; i) = lim
z→i

(z − i)f(z)

= lim
z→i

z2

(z + i)(z2 + 4)
= − 1

6i
.

Res(f ; 2i) = lim
z→2i

(z − 2i)f(z)

= lim
z→2i

z2

(z + 2i)(z2 + 1)
=

1

3i
.

Therefore from (3) we obtain∫
CR

f(z)dz +

∫ R

−R
f(x)dx = π/3. (4)

Now on CR,

| f(z) | =
| z |2

| 1 + z2 || 4 + z2 |
≤ | z |2

(| z |2 −1)(| z |2 −4)

=
R2

(R2 − 1)(R2 − 4)
=

1

R2

1

(1− 1
R2 )(1− 4

R2 )
.

Applying ML-formula we obtain

|
∫
CR

f(z)dz | ≤ 1

R2

1

(1− 1
R2 )(1− 4

R2 )
· πR → 0 as R→∞

i.e. lim
R→∞

∫
CR

f(z)dz = 0.

Therefore, proceeding limit as R→∞ we obtain from (4)∫ ∞
−∞

x2

(x2 + 1)(x2 + 4)
dx = π/3.

This completes the solution.

Example 4. Evaluate
∫∞

0
dx

(x2+1)2(x2+4)
.

Solution. We consider∫
C

1

(z2 + 1)2(z2 + 4)
dz =

∫
C

f(z)dz, say, (5)
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Fig. 2:

where C is the contour consisting of the semi-circle CR of radius R (> 2) together with

the part of the real axis from −R to R. The function f(z) has simple poles at z = ±2i

and a pole of multiplicity 2 at z = ±i, of which z = i and z = 2i lie inside the closed

contour C (see Fig 1.2). Hence by Cauchy’s residue theorem we obtain∫
CR

f(z)dz +

∫ R

−R
f(x)dx = 2πi[Res(f ; i) +Res(f ; 2i)]. (6)

Now

Res(f ; i) = lim
z→i

d

dz
[(z − i)2f(z)]

= lim
z→i

d

dz

[
1

(z + i)2(z2 + 4)

]
= lim

z→i

−2z(z + i)− 2(z2 + 4)

(z + i)3(z2 + 4)2
= − i

36
.

Res(f ; 2i) = lim
z→2i

(z − 2i)f(z)

= lim
z→2i

1

(z + 2i)(z2 + 1)2
= − i

36
.

Therefore from (6) we obtain∫
CR

f(z)dz +

∫ R

−R
f(x)dx = π/9. (7)

Now on CR,

| f(z) | =
1

| z2 + 1 |2| z2 + 4 |
≤ 1

(| z |2 −1)2(| z |2 −4)

=
1

(R2 − 1)2(R2 − 4)
=

1

R6

1

(1− 1
R2 )2(1− 4

R2 )
.
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Now applying ML-formula we obtain

|
∫
CR

f(z)dz | ≤ 1

R6

1

(1− 1
R2 )2(1− 4

R2 )
· πR → 0 as R→∞

i.e. lim
R→∞

∫
CR

f(z)dz = 0.

Therefore, proceeding to the limit as R→∞ we obtain from (7)∫ ∞
−∞

dx

(x2 + 1)2(x2 + 4)
= π/9

i.e.

∫ ∞
0

dx

(x2 + 1)2(x2 + 4)
= π/18.

This completes the solution.

Note 1. It is not possible to obtain the integral of f(x) over [0,∞) using the semi-circle

CR if f is not an even function.

Note 2. The technique of Examples 3 and 4 can be adopted to evaluate integrals of the

form

I =

∫ ∞
−∞

p(x)

q(x)
dx,

where p(x) and q(x) are polynomials such that

(i) q(x) 6= 0 for x ∈ R;

(ii) p(x) and q(x) have real coefficients;

(iii) deg q(x) ≥ deg p(x) + 2.

Integrals involving functions with infinitely many poles

Example 5. Evaluate
∫∞
−∞

eax

1+ex
dx. (0 < a < 1).

Solution. We consider ∫
Γ

eaz

1 + ez
dz =

∫
Γ

f(z)dz, say,

where Γ is the rectangle ABCD with vertices at A(R, 0), B(R, 2π), C(−R, 2π), D(−R, 0),

R being positive (see Fig 1.3). Therefore∫
Γ

f(z)dz =

∫
AB

f(z)dz +

∫
BC

f(z)dz +

∫
CD

f(z)dz +

∫
DA

f(z)dz. (8)
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Fig. 3:

The function f(z) has simple poles at the points where

1 + ez = 0

i.e. ez = −1 = e(2n+1)πi, n = 0, ±1, ±2, . . .

i.e. z = (2n+ 1)πi, n = 0, ±1, ±2, . . .

We see that among all these poles only z = πi lie inside the contour Γ. Now

Res(f ; πi) =

[
eaz

d
dz

(1 + ez)

]
z =πi

=
eaπi

eπi
= −eaπi.

Therefore by Cauchy’s residue theorem we have∫
Γ

f(z)dz = −2πieaπi. (9)

On AB, z = R + iy, 0 ≤ y ≤ 2π. Hence

| f(z) | = | eaz

1 + ez
| = | e

a(R+iy)

1 + eR+iy
|

= | eaReaiy

1 + eReiy
| ≤ eaR

eR − 1
.

Therefore by ML-formula we obtain

|
∫
AB

f(z)dz | ≤ eaR

eR − 1
· 2π → 0 as R→∞. [since 0 < a < 1].
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Again on CD, z = −R + iy, 2π ≥ y ≥ 0. Hence

| f(z) | = | eaz

1 + ez
| = | e

a(−R+iy)

1 + e−R+iy
|

= | e−aReaiy

1 + e−Reiy
| ≤ e−aR

1− e−R
.

Therefore by ML-formula we obtain

|
∫
CD

f(z)dz | ≤ e−aR

1− e−R
· 2π → 0 as R→∞. [since 0 < a < 1].

Letting R→∞ we get from (8) and (9)

−2πieaπi =

∫ −∞
∞

ea(x+2πi)

1 + ex+2πi
dx+

∫ ∞
−∞

eax

1 + ex
dx

= −
∫ ∞
−∞

eaxe2πai

1 + exe2πi
dx+

∫ ∞
−∞

eax

1 + ex
dx

= (1− e2πai)

∫ ∞
−∞

eax

1 + ex
dx

i.e.

∫ ∞
−∞

eax

1 + ex
dx = − 2πieaπi

1− e2πai

=
2πi

eπai − e−πai
=

π

sin aπ
.

This completes the solution.
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